Coordinate Systems in Mapping: Understanding UTM and Lat/Long

What is latitude and longitude?

Answer:

Latitude and longitude are coordinate values used to determine a location on Earth's surface.

1. Latitude (Φ)

  • Measures how far north or south a place is from the Equator (0° latitude).
  • Ranges from 0° at the Equator to +90° at the North Pole and -90° at the South Pole.
  • Lines of latitude are horizontal and parallel to the Equator.

2. Longitude (λ)

  • Measures how far east or west a place is from the Prime Meridian (0° longitude).
  • Ranges from 0° at the Prime Meridian to +180° eastward and -180° westward.
  • Lines of longitude are vertical and meet at the poles.

Example:

  • New York, USA40.7128° N, 74.0060° W
  • Delhi, India28.7041° N, 77.1025° E

What is UTM (Universal Transverse Mercator)?

UTM (Universal Transverse Mercator) is a coordinate system that divides the world into 60 zones, each 6 degrees of longitude wide, and provides a uniform grid for mapping and navigation.


Key Features of UTM:

  1. Divides the Earth into 60 UTM Zones

    • Each zone covers 6° of longitude.
    • Numbered 1 to 60, starting from longitude 180° west.
    • Each zone has a central meridian (middle of the 6° strip).
  2. Uses a Transverse Mercator Projection

    • Unlike latitude/longitude, which is spherical, UTM flattens the Earth into a grid system.
    • Helps reduce distortion over small areas.
  3. Coordinates are in Meters (Easting/Northing)

    • Easting (X): Measured from a false origin at 500,000 meters.
    • Northing (Y):
      • Northern Hemisphere: Measured from the Equator (0 m).
      • Southern Hemisphere: 10,000,000 meters is added to keep values positive.
  4. Eliminates Angular Measurements

    • Unlike latitude and longitude, UTM uses a Cartesian coordinate system (X, Y) for precise calculations.

UTM vs. Latitude/Longitude:

Feature UTM (Universal Transverse Mercator) Latitude/Longitude
Measurement Unit Meters (Easting/Northing) Degrees (°)
Projection Type Grid-based, Cartesian Spherical
Divisions 60 zones (6° each) 360° longitude, 180° latitude
Best Use Small/medium-scale mapping, surveying, GPS Global positioning

Example: UTM Coordinates for Delhi, India

  • Latitude/Longitude: 28.7041° N, 77.1025° E
  • UTM Zone: 43N
  • Easting: 706,719 meters
  • Northing: 3,178,628 meters

 Lat is northing and long is easting?

Answer:

Yes, in a simplified way, you can think of it like this:

  • Latitude (Lat) → Northing (Y-axis in Cartesian coordinates)

    • It measures how far a location is north or south of the Equator.
    • Increases when moving northward (+N) and decreases when moving southward (-S).
  • Longitude (Long) → Easting (X-axis in Cartesian coordinates)

    • It measures how far a location is east or west of the Prime Meridian.
    • Increases when moving eastward (+E) and decreases when moving westward (-W).

However, in surveying and mapping, the terms Northing and Easting are more commonly used in UTM (Universal Transverse Mercator) coordinates, which use a grid system instead of a spherical coordinate system like latitude and longitude.


To convert latitude and longitude to UTM (Universal Transverse Mercator) coordinates, we need to:

  1. Determine the UTM Zone based on longitude.
  2. Convert Latitude/Longitude to Easting/Northing using a mathematical projection.
  3. Account for Hemisphere (North or South).


Formula for Converting Latitude/Longitude to UTM (Universal Transverse Mercator)

The conversion from latitude (φ) and longitude (λ) to UTM Easting/Northing follows several mathematical steps.


1. Define Constants

  • Equatorial Radius (a): 6,378,137.0 m (WGS 84)
  • Flattening (f): 1298.257223563\frac{1}{298.257223563}
  • Eccentricity squared: e2=f(2f)e^2 = f(2 - f)
  • UTM Zone Calculation: Zone=λ+1806+1\text{Zone} = \left\lfloor \frac{\lambda + 180}{6} \right\rfloor + 1 where λ is the longitude.

2. Compute Projection Parameters

  • Central Meridian (λ₀) for the UTM Zone: λ0=(Zone×6183)\lambda_0 = (\text{Zone} \times 6 - 183)^\circ
  • Latitude (φ) and Longitude Difference (Δλ): Δλ=λλ0\Delta \lambda = \lambda - \lambda_0

3. Compute UTM Coordinates

3.1. Compute Intermediate Values

  • Meridional Arc (M) M=a(1e243e4645e6256)ϕ(3e28+3e432+45e61024)sin(2ϕ)+(15e4256+45e61024)sin(4ϕ)(35e63072)sin(6ϕ)M = a \left( 1 - \frac{e^2}{4} - \frac{3e^4}{64} - \frac{5e^6}{256} \right) \phi - \left( \frac{3e^2}{8} + \frac{3e^4}{32} + \frac{45e^6}{1024} \right) \sin(2\phi) + \left( \frac{15e^4}{256} + \frac{45e^6}{1024} \right) \sin(4\phi) - \left( \frac{35e^6}{3072} \right) \sin(6\phi)
  • Radius of Curvature in Prime Vertical (N) N=a1e2sin2(ϕ)N = \frac{a}{\sqrt{1 - e^2 \sin^2(\phi)}}
  • Tangent of Latitude (T) T=tan2(ϕ)T = \tan^2(\phi)
  • Eccentricity Prime Squared (C) C=e2cos2(ϕ)1e2C = \frac{e^2 \cos^2(\phi)}{1 - e^2}

4. Compute Easting (X) and Northing (Y)

  • UTM Easting (X)

    X=500,000+k0N[Δλcos(ϕ)+(1T+C)6(Δλ)3cos3(ϕ)+(518T+T2+72C58e2)120(Δλ)5cos5(ϕ)]X = 500,000 + k_0 N \left[ \Delta\lambda \cos(\phi) + \frac{(1 - T + C)}{6} (\Delta\lambda)^3 \cos^3(\phi) + \frac{(5 - 18T + T^2 + 72C - 58e^2)}{120} (\Delta\lambda)^5 \cos^5(\phi) \right]
  • UTM Northing (Y)

    Y=k0[M+Ntan(ϕ)((Δλ)22+(5T+9C+4C2)24(Δλ)4+(6158T+T2+600C330e2)720(Δλ)6)]Y = k_0 \left[ M + N \tan(\phi) \left( \frac{(\Delta\lambda)^2}{2} + \frac{(5 - T + 9C + 4C^2)}{24} (\Delta\lambda)^4 + \frac{(61 - 58T + T^2 + 600C - 330e^2)}{720} (\Delta\lambda)^6 \right) \right]
    • If in the Southern Hemisphere, add 10,000,000 meters to Northing (Y).


"25.936042,80.979702 calculate"

Answer:

import math


# Constants

a = 6378137.0  # WGS 84 equatorial radius in meters

f = 1 / 298.257223563  # Flattening

e2 = f * (2 - f)  # Eccentricity squared

k0 = 0.9996  # Scale factor


# Given latitude and longitude

lat = 25.936042  # Degrees

lon = 80.979702  # Degrees


# Calculate UTM Zone

zone = int((lon + 180) / 6) + 1

lambda0 = (zone * 6 - 183)  # Central Meridian


# Convert to radians

phi = math.radians(lat)

lambda_ = math.radians(lon)

lambda0 = math.radians(lambda0)


# Compute intermediate values

N = a / math.sqrt(1 - e2 * math.sin(phi) ** 2)

T = math.tan(phi) ** 2

C = e2 * math.cos(phi) ** 2 / (1 - e2)

A = (lambda_ - lambda0) * math.cos(phi)


# Compute Meridional Arc

M = (

    a * (1 - e2) * (

        phi - (3 * e2 / 8 + 3 * e2**2 / 32 + 45 * e2**3 / 1024) * math.sin(2 * phi)

        + (15 * e2**2 / 256 + 45 * e2**3 / 1024) * math.sin(4 * phi)

        - (35 * e2**3 / 3072) * math.sin(6 * phi)

    )

)


# Compute Easting (X)

X = 500000 + k0 * N * (

    A + (1 - T + C) * (A**3) / 6 +

    (5 - 18 * T + T**2 + 72 * C - 58 * e2) * (A**5) / 120

)


# Compute Northing (Y)

Y = k0 * (

    M + N * math.tan(phi) * (

        (A**2) / 2 + (5 - T + 9 * C + 4 * C**2) * (A**4) / 24 +

        (61 - 58 * T + T**2 + 600 * C - 330 * e2) * (A**6) / 720

    )

)


# If in Southern Hemisphere, add 10,000,000 meters to Y

if lat < 0:

    Y += 10000000


# Output UTM coordinates

zone, X, Y

The UTM coordinates for latitude 25.936042° and longitude 80.979702° are:

  • Zone: 44N
  • Easting (X): 497,968 meters
  • Northing (Y): 2,854,201 meters






Comments

Popular posts from this blog

Essential Keyboard Shortcuts in AutoCAD: Function and Control Keys

KML AND KMZ FILES OF GOOGLE EARTH